2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology

On Solving Distributed Fuzzy Constraint Satisfaction Problems with Agents

Xuan Thang Nguyen and Ryszard Kowalczyk
Centre for Information Technology Research
Swinburne University of Technology
Melbourne VIC 3122, Australia
{xnguyen, rkowalczyk} @ict.swin.edu.au

Abstract

Fuzzy Constraint Satisfaction Problem (FCSP) offers
flexible modelling and solving of many real world prob-
lems such as scheduling and resource allocation. In this
paper, we focus on Distributed Fuzzy Constraint Satisfac-
tion problems (DisFCSP) where fuzzy constraints and vari-
ables of the problems are distributed among a set of col-
laborative agents. We propose two approaches to solve
these problems: An iterative method and an adaptation of
the Asynchronous Distributed constraint OPTimization al-
gorithm (ADOPT) for solving DisFCSP. We also present
experiments on the performance comparison of the two ap-
proaches.

1 Introduction

Distributed Constraint Satisfaction (DisCSP !) has been
one of the most active research area of the Multi-Agent-
System and and Aritifical Intelligence communities in the
last few years. Genarally, a DisCSP is a problem with finite
number of variables, each of which has a finite and discrete
set of possible values and a set of constraints over the vari-
ables. These variables and constraints are distributed among
a set of autonomous and communicating agents. These
agents in general are collaborative agents. A solution in
DisCSP is an instantiation of all variables such that all the
constraints are satisfied. Distributed negotiation is an exam-
ple of DisCSP where different agents share some common
objectives but also abide to different constraints and have
their own preferences.

Whilst a number of approaches have been proposed
to solve DisCSPs [6, 5] or centralized FCSP [4] alone,
only a few work is related to the combination of DisCSP

'Some references use DCSP for Distributed Constraint Satisfaction.
Here we use DisCSP to differentiate from Dynamic Constrain Satisfaction
which are also referred as DCSP in CSP literature

and FCSP. This paper focuses on Distributed Fuzzy Con-
straint Satisfaction problems (DisFCSP) which extends
both DisCSP and FCSP. A DisFCSP can be considered as
either a version of a DisCSP where every constraint is fuzzy,
or an extension of a FCSP in distributed environments. An
example of DisCSPs is Multi-Agent System (MAS) negoti-
ation where the agents’ preferences over values of negotia-
tion attributes are modelled as fuzzy sets.

This paper is organized as follows. A literature review
on DisFCSP is presented in the next section. In Section 3,
we give an overview of important concepts used in DisCSP.
In Section 4, we present the FABT algorithm which is based
on the Asynchronous Backtracking (ABT) algorithm [6] to
solve the DisFCSP. Section 5 presents our experiments with
a discussion. Finally, conclusions and future work are dis-
cussed in Section 6.

2 Related Work

DisFCSP has been of interest to the MAS community,
especially in the context of distributed resource allocation,
collaborative scheduling, and negotiation (e.g. [3]). Those
works focus on bilateral negotiations and when many agents
take part, a central coordinating agent may be required. For
example, the work in [3] promotes a rotating coordinating
agent which acts as a central point to evaluate different pro-
posals sent by other agents. Hence the network model em-
ployed in those work is not totally distributed. Another im-
portant note is that these work focuses on competitive nego-
tiation where agents try to outsmart each other as opposed
to collaborative negotiation hence does not use techniques
from DisCSP algorithms.

Another related work is the iterative approach presented
in [2] for hierachical DisCSPs (and may also be used for
DisFCSPs). Our interative method is based on that ap-
proach. However, the iteration in the approach is either
from top down or bottom up. Therefore the complexity in
the worst case is O(n) (calls to DisCSP instances) whereas
our new iterative based approach in this paper is O(logan)

0-7695-3027-3/07 $25.00 © 2007 IEEE 387

|IEEE
@) computer
DOI 10.1109/TIAT.2007.81 Soclef

ty

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 15,2010 at 05:02:32 EDT from IEEE Xplore. Restrictions apply.

where n is the number of a-cut levels as will be explained
in Section 4.1.

3 The ABT4F algorithm

This part describes the ABT based algorithm for Fuzzy
constraints (ABT4F). The algorithm enables the iterative
principle [4] to be used efficiently in DisFCSP by adding
two new features: a built-in termination mechanism and a
nogood caching technique for reusing information between
successive searches

It is well known that a fuzzy set can be viewed as a col-
lection of crisp sets at different a-cut levels (i.e. the princi-
ple of the resolution identity). Similarly, a Fuzzy CSP can
be modelled as a collection of crisp CSPs at different levels
of constraint satisfaction:

¢(@) = act(a)

in which 5 (x) is a crisp constraint which is satisfied iff x
belongs to the a-cut: {z : pic, () > a,0 < a < 1},

The iterative methods [4] for centralized search use this

model to solve a FCSP as a series of CSPs. Using the same
principle, a DisFCSP P/ in general can be considered as
a union of Dis(Crisp)CSPs at different levels of constraint
satisfactions:
p/ = > aP, where a P, results from P/ by replacing all
fuzzy constraints in P/ with their crisp constraints at the «
level. A solution of the DisFCSP in definition 2 is to find a
solution at the highest a-cut level.

The principle of an iterative approach is to select and
solve a series {P,,, ..., Py, } of DisCSP instances within
DisFCSP. The decision for selecting P, , partly depends
on the outcome of the search at P In particular:

ey

Qjq1”

ait1 > app = maz{ay : k < i, P,, solved}

ait1 < ayp = min{ay : k <1, P,, overconstrained}

Two simple methods of selecting the next a-cut level are
to use a top-down or bottom-up approach. In our algorithm,
we use a strategy similar to the binary search for this se-
lection. The main idea is to continuously update a global
ar g (lower bound) and a oy g (upper bound). The o g is
the satisfaction level at which we know that a solution can
be found. The ay g is the satisfaction level above that we
cannot find any solution for. The search level is computed
as the middle point between the ;g and ayp:

“

a; = (g +aup)/2

With this binary search based selection strategy, in the worst
case for random constraints, we make logo¢ Dis(crisp)CSP
search as opposed to ¢ search in top-down or bottom-up ap-
proaches where ¢ is the total number of different satisfaction

2
3)

388

levels. At each a-cut level, FABT uses a ABT algorithm. In
addition to ABT message types (see [6]), FABT uses an-
other message type called change-threshold which is used
by an agent in order to instruct every other agent to change
to a new DisCSP problem.

4 ADOPT adaption for DisFCSP

We present here a brief summary of the ADOPT algo-
rithm. For more information on ADOPT, we refer to [5].
In ADOPT, a number of n agents collaborate to solve the
optimization problem:

mn Z fij(vi,vj)

1<i<j<n

&)

in which for every different pair i, j f;;(d;,d;) is a func-
tion which defines the cost incurred when agents A; and A ;
select the values d; and d; for their variables v; and v; re-
spectively.

During the search, an agent A; (i.e. the agent holding v;)
continues to update its LB and UB. These values when A;
selects the assignment v; = d; is computed as:

Vd; € Di, LB(d;) = 6(di) + Y Ib(di,v) (6)
A eChildren
Vd; € Di,UB(d;) = 6(di) + > Ib(di,v) (D)

A;eChildren

whereas [b(d;,v;) the is LB reported previously from A,;-
a children of A; for A;’ assignment of v;=d;. §(d;) is the
local cost incurred by shared constraints between A; and its
parents.

6(d;)

= fij(diydj) (®)

>

(vj,dj)EView

In general, A; tries to select an assignment of its own
value so that LB or UB is smallest (to the final aim of
making the cost smallest). In other words, the LB and UB
choosen in general is:

LB = ming,ep, LB(d;)
UB = mindiepi UB(di)

©))
(10)

ADOPT adaptation for DisFCSP consists of two steps.
The first step is to compute ADOPT cost from the fuzzy
constraints at each agent in a DisFCSP. To do this, we can
define the cost for an assignment of v; at the agent Ay, as:

1 —sata,(vi)

if i=j
fij(visvg) = { 0)

if 1]
where sat 4, is defined in (3). The global objective of the
DisFCSP is:

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 15,2010 at 05:02:32 EDT from IEEE Xplore. Restrictions apply.

max mini<;<n {sata,(v;)} &
min Mari<i<n {fij (Ui, ’Uj)} for ADOPT. Note that
we have a maximization for the aggregator instead of a
summation in (10).

The second step for ADOPT adaptation for DisFCSP is
to redefine the computation of LB and UB since our global
objective function is a min max operation. Instead of (11)
and (12), we redefine these as:

Vd; € Dy, LB(d;) = max {6(d;), maxv. a,echitdrenlb(di, v1) }

Vd; € D;,UB(d;) = max {6(d;), mazy. a,echitarenlb(di, vr) }

For the changes above in the objective function and
formulas of LB and UB, the same arguments in [5] for
ADOPT’s termination and correctness can still be applied.
In other words, our ADOPT adaptation can be used to solve
the DisFCSP problem.

5 Experiments

We carried out experiements for the two approaches on
the distributed Map Colouring problem. In our problem,
there are five colours (i.e. the domain size of the color
variable is 5) of which each agent has different preference
levels in {0.00,0.25,0.50,0.75, 1.0} These preferences are
private to the agents. The agents collaborate to find the
colours so that two neighboring agents use different colour
while maximizing the minimum preference of agents (i.e.
the max min problem).

We ran the experiments on different numbers of agents:
from 8 to 50 agents on a Java discrete event simulation
toolkit. The experimental implementation is available at
[1]. On the average, the time taken for each synchronous
cycle [6] is 25 seconds (simulation time). Different ran-
dom map coloring instances were generated per run. 50
runs were used for each density value of 1.5, 2.0, and 3.0
(density = num of links/number of agents). Figure 1,2, and
3 in the Appendix plot the performance of FABT versus
ADOPT in terms of completion time and traffic load (in
total number of message per synchronous cycle). As can
be seen from these figures, FABT outperforms ADOPT for
hard problems (i.e. high density problems). In particular,
for the density of 2.0, FABT provides better performance
starting from 30 agents. For the density of 3 where many
instances generated have a solution at zero level of prefer-
ence (i.e overconstrained), FABT completely outperforms
the ADOPT based algorithm. This can be explained by
the binary search strategy that FABT uses. For high den-
sity problems FABT quickly proceed to check the lowest
alpha-cut level (i.e. at 0.25) and as long as it discovers the
problems are overconstrained, the algorithm is terminated.
On the contrary, this early detection does not occur to the

389

ADOPT based algorithm. It is important to know that this
outperformance of FABT also comes with the cost of com-
plexity in its nogood storage (as for ABT) whereas ADOPT
maintains a linear complexity.

6 Conclusions

In this paper, we have proposed two approaches to solve
DisFCSPs. In the first approach, we show how iterative
Efrﬁl}niques in centralized FCSP can be extended and used in
distributed environments. This is explained with our FABT
S}&))rithm which solves DisFCSPs using successive ABT
and provides termination mechanism as well as informa-
tion reuse to ABT. In the second approach, we propose an
adaption of the ADOPT algorithm. We carried out experi-
ments to compare the performance of these two algorithms
and draw the conclusion that ADOPT is more suitable for
low density problems whereas FABT can have better per-
formance for hard DisFCSP instances. However the per-
formance of FABT come with the cost of complexity in its
nogood storage. In summary, we believe that the proposed
algorithms expand the applicability of FCSP to distributed
problems that require distributed solving approaches such
as resource allocation, collaborative scheduling and dis-
tributed negotiation.

References

[1] SIM MAS Toolkit. http://ciamas.it.swin.edu.au/software/simulator-

doc/, 2007.
(2]

K. Hirayama and M. Yokoo. An approach to overcon-
strained distributed constraint satisfaction problems:

Distributed hierarchical constraint satisfaction, 2000.

[3] X.Luo, N. Jennings, N. Shadbolt, H. Leung, and J. Lee.
A fuzzy constraint based model for bilateral multi-issue

negotiations in semi-competitive environments.

[4] P. Meseguer and J. Larrosa. Computational complexity
of fuzzy constraint satisfaction. In Technical Report,

1994.

P. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt:
Asynchronous distributed constraint optimization with
quality guarantees, 2005.

[6] M. Yokoo and K. Hirayama. Algorithms for distributed
constraint satisfaction: A review. Autonomous Agents

and Multi-Agent Systems, 3(2):185-207, 2000.

Appendix

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 15,2010 at 05:02:32 EDT from IEEE Xplore. Restrictions apply.

Sin-tine {sec)

14a88
12888
loaaa
bifs e]
6a88
4088

2000 |

Link Density=2, Yar Domain=4

FABT ——

r ADOPT ——,

i@ 15 28 25 380 35 48 45
Agents

il

Hsg No {per cycle}

308

258

208

158

168

5a

Link Density=2, Yar Domain=4

"FABT

R

ADOFT

25 380 35 48 45
Agents

hil:]

Figure 1. Comparation of FABT and ADOPT performance in terms of messages per cycle and com-
pletion time for density = 2.0

Sin-tine {sec)

Jogaa

25888

20008

15888

10888

haa8

Link Density=3, Yar Donain=4

T T T T T i:HBTI T
L ADOPT —+—

i@ 15 28 25 38 35 48 45
Agents

Hsg Ho {per cycle}

408
3508
308
258
208
158
188

bl

Link Density=3, Var Donain=4

"FABT —+—
ADOPT

i@ 15 28 23 38 35 48 45
Agents

]

Figure 2. Comparation of FABT and ADOPT performance in term of message per cycle and completion
time for density = 3.0

Sin-tine (sec)

Link Density=1,5, Var Domain=4

4588
4088
3508
Jooa
2508
2008
1588 |
1a68
508

FRET ——
ADOPT

18 15 28 25 38 35 48 45
Agents

il]

Hsg No {per cycle}

258

208

158

168

5a

Link Density=1,5, Var Domain=4

"FABT ——
ADDPT ——

25 38 33 48 45
Agents

hili}

Figure 3. Comparation of FABT and ADOPT performance in term of message per cycle and completion
time for density = 3.0

390

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 15,2010 at 05:02:32 EDT from IEEE Xplore. Restrictions apply.

